Plasticity in Ion Channel Expression Underlies Variation in Hearing during Reproductive Cycles

نویسندگان

  • Kevin N. Rohmann
  • Daniel J. Fergus
  • Andrew H. Bass
چکیده

Sensory plasticity related to reproductive state, hormonal profiles, and experience is widespread among vertebrates, including humans. Improvements in audio-vocal coupling that heighten the detection of conspecifics are part of the reproductive strategy of many nonmammalian vertebrates. Although seasonal changes in hearing are known, molecular mechanisms determining this form of adult sensory plasticity remain elusive. Among both nonmammals and mammals, large-conductance, calcium-activated potassium (BK) channels underlie a primary outward current having a predominant influence on frequency tuning in auditory hair cells. We now report an example from fish showing that increased BK channel abundance can improve an individual's ability to hear vocalizations during the breeding season. Pharmacological manipulations targeting BK channels, together with measures of BK transcript abundance, can explain the seasonal enhancement of auditory hair cell sensitivity to the frequency content of calls. Plasticity in ion channel expression is a simple, evolutionarily labile solution for sculpting sensory bandwidth to maximize the detection of conspecific signals during reproductive cycles.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Seasonal plasticity of auditory hair cell frequency sensitivity correlates with plasma steroid levels in vocal fish.

Vertebrates displaying seasonal shifts in reproductive behavior provide the opportunity to investigate bidirectional plasticity in sensory function. The midshipman teleost fish exhibits steroid-dependent plasticity in frequency encoding by eighth nerve auditory afferents. In this study, evoked potentials were recorded in vivo from the saccule, the main auditory division of the inner ear of most...

متن کامل

Evolution of CpG island promoter function underlies changes in KChIP2 potassium channel subunit gene expression in mammalian heart.

Scaling of cardiac electrophysiology with body mass requires large changes in the ventricular action potential duration and heart rate in mammals. These changes in cellular electrophysiological function are produced by systematic and coordinated changes in the expression of multiple ion channel and transporter genes. Expression of one important potassium current, the transient outward current (...

متن کامل

Presynaptic mechanisms of neuronal plasticity and their role in epilepsy

Synaptic communication requires constant adjustments of pre- and postsynaptic efficacies. In addition to synaptic long term plasticity, the presynaptic machinery underlies homeostatic regulations which prevent out of range transmitter release. In this minireview we will discuss the relevance of selected presynaptic mechanisms to epilepsy including voltage- and ligand-gated ion channels as well ...

متن کامل

The Effect of Wetting-Drying Cycles and Plasticity Index on California Bearing Ratio of Lime Stabilized Clays

This paper aims to present an experimental and numerical study on the effect of wetting-drying cycles and plasticity index on the California Bearing Ratio (CBR) of lime stabilized clayey soils. The numerical analysis was carried out based on finite element method for comparison between results of experimental and numerical studies. Three clays with different plasticity indices were mixed with v...

متن کامل

Gene Expression Profile of CatSper3 and CatSper4 during Postnatal Development of Mouse Testis

Channel activities, particularly those of calcium channels, have vital roles in the process of sperm maturation, motility and sperm-egg interaction. A group of the recently discovered ion channels associated with these processes is four novel channel-like proteins known as CatSper (cation channel sperm) gene family. CatSper1 and CatSper2 show sperm specific expression patterns. However, neither...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Current Biology

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2013